Study Material for BG 5th Semester (Green Chemistry) pdf kashmir university

 

1. Green Chemistry
The design of processes that reduce or eliminate the use and production of toxic products
is known as green chemistry.
 The term was first used by Paul T. Anastas in the last decade of the 20th century
 Green Chemistry implies:
 Prevention of pollution rather than treatment of pollution
 Environmentally Benign Chemistry
 Sustainable Chemistry
 Ecofriendly Chemistry
 Clean Chemistry
 Green chemistry should not be confused with environmental chemistry as environmental
chemistry deals with various facets of pollution, degree of pollution and treatment of
pollution, while as green chemistry does not lead to pollution at all, hence we say it prevents
pollution.
 Thus green chemistry approach is a prevention approach, while as environmental chemistry
approach is a treatment approach. Since prevention is better than cure, we may say green
chemistry is better than environmental chemistry.
 To develop a perfectly green chemical pathway is not easy. However green chemists try
their best to maximize the greenness in any process as far as possible.
 Green chemistry is generally aimed at
 Producing chemicals which are safe for biotic as well as abiotic environment.
 Using cost and energy effective methods and procedures  Designing processes that reduce or eliminate the use and production of toxic
materials
 Minimizing the production of wastes.
 Avoiding the production of non-biodegradable materials/products.
 Maximizing the use of raw-materials from renewable resources
 As per the father of Green Chemistry, Paul T. Anastas, green chemistry utilizes a set of 12
principles that aim to achieve and increase the greenness in a process.
2. Principles of Green Chemistry
 The twelve principles of green chemistry that have been formulated (Ref. P.T. Anastas
and J.C. Warner ‘Green Chemistry Theory and Practice’, Oxford University Press, New
York, 1998) are listed below:
1. Prevention
2. Atom Economy
3. Less Hazardous Chemical Synthesis
4. Designing Safer Chemicals
5. Safer Solvents and Auxiliaries
6. Design for Energy Efficiency
7. Use of Renewable Feedstocks
8. Reduce Derivatives
9. Catalysis
10. Design for Degradation
11. Real-time Analysis for Pollution Prevention
12. Inherently Safer Chemistry for Accident Prevention

WhatsApp Group Join Now
Telegram Group Join Now

Leave a Comment